
FACILE CHEMO-ENZYMATIC SYNTHESES OF SELECTIVELY PROTECTED DERIVATIVES OF DEOXY-INOSITOLS

H.Hönig*, P.Seufer-Wasserthal, A.E.Stütz and E.Zenz Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria

Abstract: Selectively substituted symmetrical polyhydroxycyclohexanols like 3-deoxy-epi-(e.g. 2,4) and 1-deoxy-scyllo-inositol derivatives (e.g. 6) conveniently can be prepared by chemoenzymatic methods.

Deoxy cyclitols constitute interesting synthons for possible enzyme inhibitors in many fundamental cellular processes¹. Of the ten possible deoxy cyclitols (cyclohexanepentols) known², four are meso forms, which at regioselective substitution simultaneously create enantiomers. Up to now, mostly racemates have been prepared1.

We have shown, that enzymatic hydrolysis of some 2-substituted cyclohexanoates is an excellent method for preparing enantiomerically pure derivatives³. In this case again the preference of Candida cylindracea lipase for selectively hydrolyzing R-esters4 has been proved.

Enzymatic hydrolysis of 1,2- and 1,3-diacyloxycycloalkanols with pig liver esterase is known from the literature^{5a,b}.

Based on these facts, we wish to present a facile approach to some enantiomerically pure substituted derivatives of 3-deoxy-*epi*-inositol [*muco*-quercitol ($\underline{3}$), derivatives $\underline{2}$ and $\underline{4}$] and 1-deoxy-*scyllo*-inositol [*scyllo*-quercitol ($\underline{7}$), derivative $\underline{6}$].

Selectively substituted cyclohexanone derivatives <u>1</u> and <u>5</u> are easily prepared as a 4:1 mixture from methyl- α -D-glucopyranoside in 42% yield^{6a,b}. After separation, <u>1</u> can be chemically converted to (2R)-2-O-acyl-1,5,6-tri-O-benzyl-3-deoxy-*epi*-inositol <u>4</u> in four steps, whereas the enantiomer thereof, <u>2</u>, can be prepared in a chemo-enzymatic approach in three steps. Thus <u>1</u> is converted to the THP derivative (mixture of isomers, 92% yield), reduced stereoselectively by NaBH₄/MeOH (86%), acylated⁶, and deprotected to give <u>4</u> in 66% overall yield (sirup, $[\alpha]_D^{20}$ -16.1(c = 5, CH₂Cl₂). To prepare the enantiomer <u>2</u>, <u>1</u> is first reduced to <u>3</u>^{6a} by NaBH₄/MeOH and after diacylation⁷ and enzymatic hydrolysis (75% by conversion) <u>2</u> is obtained in 60% yield (sirup, $[\alpha]_D^{20}$ +15.7(c = 5, CH₂Cl₂); e.e. = 97.5%)⁸.

Likewise 5, after hydroxyl function blocking with DHP, can be reduced to a 1:1 mixture of regiospecifically THP-protected derivatives of 7 and 8. After acylation, deblocking, and separation, the respective derivative 6 can be obtained in 32% overall yield $([\alpha]_D^{20} -10.2(c = 4, CH_2Cl_2))$. In this case, the enzymatic pathway (due to the preference of *Candida cylindracea* lipase for *R*-configurated esters), after reduction of 5 with NaBH4/1,4-dioxane^{6a}, separation, acylation and enzymatic hydrolysis (80% by conversion) results in compounds 6 (32%, $[\alpha]_D^{20} -9.7(c = 2, CH_2Cl_2)$; e.e. = 95%) and 8^{6a}. Thus the sequence to 6 can be facilitated by the chemoenzymatic approach, reducing the number of necessary steps from 4 to 3.

<u>Acknowledgements:</u> Support by the *Fonds zur Förderung der wissenschaftlichen Forschung* (Vienna), project P6893C is gratefully acknowledged.

References and Notes

- For a discussion of the biological background and the nomenclature of deoxycyclitols see e.g. C.Jiang, J.D.Koyer and D.C.Baker, J.Carbohydr.Chem., 6 (1987) 319.
- 2. G.E.McCasland, Adv.Carbohydr.Chem., 20 (1966) 11.
- 3. K.Faber, H.Hönig and P.Seufer-Wasserthal, Tetrahedron Lett., 29 (1988) 1903.
- 4. G.Lagrand, M.Secchi, G.Buono, J.Baretti and C.Triantaphylides, Tetrahedron Lett., 26 (1985) 1857.
- a. D.H.G.Crout, V.S.B.Gaudet, K.Laumen and M.P.Schneider, J.Chem.Soc., Chem.Commun., 1986, 808; b. G.Baudin, B.I.Glänzer, K.S.Swaminathan and A.Vasella, Helv.Chim.Acta, 71 (1988) 1367.
- a. D.Semeria, M.Phillippe, J.-M.Delaumeny, A.-M.Sepulchre and St.D.Gero, Synthesis, 1983, 710; b. A.Köhn and R.R.Schmidt, Liebigs Ann., 1987, 1045.
- 7. 6.Höfle, W.Steglich and H.Vorbrüggen, Angew.Chem., 90 (1978) 602; Angew.Chem.Int.Ed.Engl., 17 (1978) 569.
- 8. e.e. and absolute configurations were determined by comparison with optical rotations of the product obtained by the chemical approach and independently checked by 1H- and 19F-mmr of the respective MTPA esters⁹. All new compounds were identified by their 13C-(75 MHz) nmr spectra¹⁰.
- 9. J.A.Dale, D.L.Dull and H.S.Nosher, J.Org.Chem. 34, 2543 (1969).
- 10. 13C-nur (CDCl3, δ): 2: C1 79.5; C3 68.9; C3 30.8; C4 67.2; C5 81.5; C4 77.9
- <u>5</u>: C₁ 34.1; C₁ 68.5; C₃ 83.9; C₄ 83.3; C₅ 86.0; C₆ 68.1*;{⁴: could be reversed}.
- 11. Bn = C₆H₃CH₃-, THP = tetrahydropyranyl-, DHP = 3,4-dihydro-2H-pyran, PPTS = pyridinium-toluene-4-sulfonate, DMAP = 4-dimethylaminopyridine, PTSA = 4-toluenesulfonic acid.

(Received in Germany 14 November 1988)